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I. INTRODUCTION

In the work described in this report, the phenomenon of target radar
cross section dependence on transmitted frequency was investigated as a can-
didate technique for target classification. Very simply, the phenomenon
results from the fact that a target consists of several individual reflectors
which constructively or destructively interfere, depending on their range
separation and on the tranmitted frequency. Thus, over a given frequency
diverse bandwidth, the received signal amplitude will fluctuate or scin-
tillate, and these scintillations can be analyzed to determine target
characteristics.

Frequency diversity has long been investigated as a method of improving
target detectionl-4 , tracking accuracy 5-7, and range resolution.8 More
recently, frequency diverse target scintillation has been studied as a tech-
nique for acquisition and classification of stationary targets.9- 13 Also, fre-
quency diversity, combined with polarization diversity, has been investigated
both experimentally and theoretically; in these techniques, amplitudes and
relative phases are measured to obtain stationary target signatures.

14 -18

The purpose of the present experimental effort was to design and build a
94 GHz radar and to evaluate the utility of the radar for detecting frequency
diverse radar cross section effects. A few additional measurements were made
with a 140 GHz radar, and these data are also presented and discussed.

In Section II, a brief theoretical analysis of expected results is
outlined. Descriptions of the two radar systems used in this experiment are
given in Section III, and the signal processing and measurement techniques are
also discussed.

Experimental data taken for corner reflectors at various range spacings
are presented In Section IV. The frequency calibration method used is
described, and range separation values obtained with radar results are com-
pared with measured values.

For the 94 GHz data, a computer simulation program was developed for com-
parlson. A description of the program is given in Section V, while, in
Section VI, the agreement and discrepancies between the theoretical and
experimental results are discussed.

Finally, in Section VII, conclusions from the simulated and experimental
results are drawn with respect to radar characteristics, and recommendations
for further research are given.

II. MATHEMATICAL ANALYSIS

Consider a target consisting of n reflectors with radar cross sections
(RCS) o , a2, v3, . . . n . Assume that the target is stationary and that all
reflectors are equally illuminated by the radar. The target is in the far-
field of the radar, and vice versa. Assume also that the typical linear
dimension of the reflectors is much larger than the transmitted wavelength
(optical region). In general, the RCS of the individual reflectors will vary
as the frequency squared, as for flat plates and corner reflectors. However,

5-' i



the frequency diverse bandwidth is assumed to be sufficiently small that these

changes in RCS are negligible.

Let Rij be the range to the ith reflector, and define

Ri I -R4, M

that is, Rj is the range separation between the ith and the jth reflector.
It can be shown that, for a continuous wave radar, the square-law detected
signal voltage, V(f), is given by1

3

V(f) = A (c1  + 2 03 + . .. .. + a n

+ 2-42 cos[2R

+ 2Fj-0j coos[2.

+ 2*jOWo Cos [21C (12) f]

+ . . .1 (2)

or

n n n ^

v(f). A noi + os[ 2 . f] (3)
i-i i -I

ii

Here A is a parameter depending on target range, transmitted power, and
characteristics of the radar; c is the speed of light, and f is the
transmitted frequency.

If the voltage signal is measured as a function of frequency, there is a
constant "dc" level and a superposed "ac" waveform which is periodic with
frequency.

The result is analogous to a time domain periodic wave form; here time is
analogous to frequency, and frequency is analogous to the quantitiy

- 2 . (4)

Note that this "frequency" fij is the time it take. electromagnetic energy to
make a round trip between the ith and jth reflectors.

6

. ' " •!':". -'.-- .- .. - , ; ,. " : " . -



Equation (3) shows that, mathematically, the Fourier transform of V(f) is
already performed. The transform of V(f) should show a spike of amplitude

Aij = 2AF-a (5)

at a "frequency" of fij (Equation (4)).

Each pair of reflectors contributes a spike to the Fourier transform,
although two pairs with equal range separation contribute to the same spike
and, thus, cannot be distinguished. However, a high degree of structural
periodicy in the target, i.e., many reflectors with equal spacing, would
result in a strong spike at the characteristic range separation. The number
of contributions to the Fourier transform spectrum increases in an arithmetic
series with the number of reflectors; for n reflectors, there are lkn(n-1)
contributing pairs.

All the experimental data taken were for two or three reflectors. For
the two reflector case, the V(f) (or "interference pattern") is given by

v(f) - A{a + 02 + 24Y cos[2xI, f]j} (6)

i.e., a single sinusoidal oscillation. For three reflectors,

V(f) - A{i + a2 + a3

+ u2 cos[2%2R12 f]

+ a co [2%( f]

+ 2J2c coa[2%(.R,.) f]} (7)

so that V(f) in this case is a superposition of three sinusoidal oscillations.

In terms of these oscillations, one complete cycle will be observed when
the cosine argument changes by 2%, or when the change in frequency, Af, is
such that

Af - . (8)

The frequency diverse bandwidth (Af) required to see one complete oscillation
in V(f) is calculated in Table 1 for various reflector separations. The
values were chosen to aid in understanding the experimental data.

7! .. .. .. I



TABLE I. FREQUENCY DIVERSE BANDWIDTHS.

Reflector Range Frequency Diverse Bandwidth
Separation Rij Required for One Cycle in V(f)

(Meters) MHz

10 15.0
6 25.0
5 30.0
4 37.5
3 50
2 75
1 150
0.5 (50 cm) 300
0.1 (10 cm) 1.5 GHz
0.01 (1 cm) 15 GHz

III. DESCRIPTION OF RADAR SYSTEMS

A. 94 GHz Radar System

The 94 Ghz radar system is depicted in Figure 1. The millimeter
source is a continuous wave (cv) klystron with a nominal power of 300 mW and a
nominal electronic tuning 3 dB bandidth of 200 MHz. The klystron reflector
voltage is sawtooth wave modulated at a 1 KHz repetition rate to sweep the
klystron over its entire tuning range. Some of the output is coupled to a
thermistor for monitoring the power. Also, some of the power is coupled
through a cavity wavemeter (for ballpark frequency measurements) to a square
law detector (for monitoring the transmitted power waveform). The power at
the transmit antenna for this experiment is estimated to be about 200 mW. A
linear vertically polarized wave was transmitted.

The receiver consists of an antenna, a square law detector with a sen-
sitivity of about 600 mV/mW, and a low noise preamplifier used at a gain of
ten and an input impedance of 1 MegOhm. The receive signals were monitored
with a low bandwidth (500 KHz) high sensitivity (100.#V/division) oscilloscope
triggered by a I KHz sync pulse from the waveform. generator. As shown in
Figure 1, the received waveform consisted of the broad "interference pattern"
(received signal vs klystron reflector voltage) during the sawtooth rise, and
a compressed version during the sawtooth fall.

This signal was applied to a boxcar averager/gated integrator, also
triggered at I KHz by the waveform generator. The boxcar averager provides a
variable size aperature which may be positioned anywhere during the received
interference pattern. The gated integrator is operated in the exponential
averaging mode, which provides a weighted average output; that is, the most
recent pulses have more influence than early pulses. The output of the boxcar
averager can be considered to be the average of 2 TC/AD repetitions of the
signal falling within the aperture, where TC is the selected integration time
constant and AD is the selected aperture duration. For this experiment,
TC-1.0 s and AD-10 s, so there was essentially no pulse integration.

8
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The boxcar averager provides for the automatic scan of the aperture bet-
ween selected limits and also provides a scan voltage proportional to the
aperture position. Thus, data were taken by sweeping the aperature once
across the broad Interference pattern and plotting boxcar integrator output vs
scan voltage (or, equivalently, reflector voltage) on an X-Y recorder. The
sweep time was about 18 s, and a boxcar integrator signal time constant of 0.1
s (low pass filter) provided some smoothing of the interference pattern.

B. 140 GHz Radar System

The characteristics of the 140 GHz radar have been documented exten-

sively and specifications are presented in Tables 2-4. 19 The frequency of the
radar is manually adjustable over a 600 MHz bandwidth. Data were taken by
measuring the pulse height of the target response on an oscilloscope (A-scope)
as a function of frequency. Only the observed maxima and minima points were
recorded.

TABLE 2. TRANSMITTER PERFORMANCE SPECIFICATIONS.

TRANSMITTER - Coherent/Pulse Compression
Operating Frequency 142.02 GHz
Transmitted Peak Power 10 mW (10 dBm)
Equivalent Peak Power 600 mW (28 dBm)
Transmitted Pulse Width 3 usec
Compressed Pulse Width 50 nsec
Chirp Bandwidth 20 MHz
Pulse Compression Ratio 60
PRF 30 kHz
Pulse Repetition Interval 33.3 usec
Duty Cycle 9%
Average Transmitted Power 0.9 MW
Frequency Diversity Bandwidth 660 MHz

TABLE 3. RECEIVER PERFORMANCE SPECIFICATIONS.

RECEIVER - Pulse-Doppler with Pulse Compression
First LO Frequency 140.67 GHz
First IF Frequency 1395 MHz
Second LO Frequency 1275 MHz
Second IF Frequency 120 MHz
Noise Figure (SSB) of First Mixer 13 dB
First Mixer Preamplifier Gain 26 dB minimum
Circulator Frequency Range 142 + I GHz
Circulator Isolation 18 dB minimum
Circulator Insertion Loss 1.6 dB maximum
Circulator VSWR 1.40 maximum
Unambiguous Range -5 km
Receiver Bandwidth 24 MHz
SAW Line Bandwidth 25 MHz
Range Cell (3-usec pulse) 1500 ft
Range Cell (50-neec pulse) 25 ft

10



TABLE 4. TRACKING/GUIDANCE ANTENNA SPECIFICATIONS.

Type Cassegrain, Conscan
Operating Frequency 142 GHz
Diameter (1) 60 cm
3-dB Beamwidth (OB ~ X/1) 0.230 = 4.0 mrad

(0.230 = 4.0 mrad)
Gain (GD ~ 4% A/X2) 56.2 dB (59 dB)

(+ efficiency - 50%)
Sidelobe Level -16.3 dB
Crossover Points 3 dB - 2.0 mrad offset

1.5 dB -+ 1.1 mrad offset
VSWR 1.15
Polarization Linear, Vertical
Conical Scan Rate 30 to 90 Hz
Angle of First Sidelobe (- 6 mrad)
Far Field (R ) 2D2/k) (R > 340 m)

IV. EXPERIMENTAL RESULTS

A. 94 GHz Radar Data

The measurements made with the 94 GHz radar were taken in the High
Bay area of Building 5400, Redstone Arsenal, Alabama. The target range was
-80 meters, satisfying far-field conditions for both radar and target. The
transmit and receive antennas were side-by-side, and their centers were
ap~roximately I meter above the concrete floor. Antenna beamwidthe are
0.40 and 0.60, so that the antenna main lobes did not intersect the floor at
the target (no main lobe multipath). The 3 dB beamwidths of the transmit and
receive antennas overlapped each other by approximately 30 cm at the target.

The first data taken were a series for the two corner reflectors
separated by 6, 5, 4, 3, 2, and 1 meters. These results are shown in Figures
2-7. The corner reflectors were triangular trihedrals with RCS of 200 sm and
91 sin. The larger corner reflector was behind and above the smaller corner
reflector. The scales shown on the data are relative amplitudes
(uncalibrated); the klystron reflector voltage range is about 100 V, while +he
video output (boxcar integrator output) is on the order of millivolts. These
data show the expected result--a single oscillation modified by the
transmitter power curve. As a measure of the transmitter (and receiver) power
curve, data were taken for the transmit waveform monitor output (Figure 8)
and for each corner reflector separately (Figure 9 and 10). The power curve
of Figure 8 is similar to typical reflex klystron power output characteristics
(Figure 11).20 Using the boxcar aperature in conjunction with the cavity
wavemeter, the total operating range was determined to be approximately from
93.96 Ghz to 94.11 Ghz (+ 0.01 GHz), or a total of about 150 MHz. The center
frequency (maximum power-point) was 94.05 GHz. The 3 dB electronic tuning
bandwidth is around 100 MHz, which is about half that claimed by the manufac-
turer.

The klystron frequency is clearly not a linear function of reflector
voltage, so the data obtained for 2 reflectors separated by 6 meters was used
to calibrate frequency change vs reflector voltage change. These calibration

11



Video
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Klystron Reflector Voltage Change

Figure 2. Two reflectors separated by 6 meters.
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Video
Outnut
v(f)

Klystroi Reflector Voltage Change

Figure 3. Two reflectors separated by 5 meters.(
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Video
Output
V(f)

Klystron Reflector Voltage Change

Figure 4. Two reflectors separated by 4 meters.
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Video
output
V( f)

Klystron Reflector Voltage Change

Figure 5. Two-reflectors separated by 3 meters.
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Klystron Reflector Voltage Change

Figure 6. Two reflectors separated by 2 meters.
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Klystron Ref letor Voltage Change

Figuare 7. Two reflectors separated by 1 mete~r.
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Figure 8. Transmitter power curve.
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Output
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i

Klystron Reflector Voltage Change

Figure 9. 200 am reflector only.
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Video
Output,

Klystron Reflector Voltage Change

Figure 10. 91 sm reflector only.

300 2
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Klyatrorn Reflector Voltage In Volts

Figure 11. Power output characteristics of a reflex klystron (after Liao).
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data were then used to analyze the results for other separations and, In par-
ticular, compare the range separation calculated from the radar data to the
actual range separation as determined with a tape measure.

Figure 12 indicates how the calibration was made. The position of each
maxima and minima, indicated by a vertical line, was estimated to the nearest
one half linear unit by bisecting the given half cycle at its half height.
These data are given in Table 5. From Table 1, it is seen that, for a 6 meter
separation, the maxima are 25 MHz apart, so that the extrema are 12.5 MHz
apart. The first maximum was arbitrarily assigned a value of 25 MHz. The
data of Table 5 are plotted In Figure 13; typical frequency characteristics
shown in Figure 14 are similar.

20

TABLE 5. FREQUENCY CHANGE CALIBRATION DATA

Extrema Klystron Reflector Change In
Voltage Change Frequency
(linear units) (MHz)

Maximum #1 11.0 25.0*
Minimum #1 18.0 37.5
Maximum #2 27.0 50.0
Minimum #2 34.5 62.5
Maximum #3 42.5 75.0
Minimum #3 51.5 87.5
Maximum #4 60.0 100.0
Minimum #4 67.0 112.5
Maximum #5 72.5 125.0
Minimum #5 79.0 137.5
Maximum #6 83.0 150.0
Minimum #6 87.5 162.5

*Arbi trarily Assigned

For the data in Figures 3-7, the number of cycles observed and the reflector
voltage change for these cycles were determined. The corresponding frequency
change was then found from Figure 13, and the distance between reflectors was
calculated from Equation (8) in the form

or =Af (# of cycles) (9)

or

AR - c(# of cycles) (1o)
2AF

where Af is now the frequency change over the number of cycles observed. The
results of the radar data are compared with the actual separations in Table 6.
The actual separations were determined with a tape measure between the front
edges of the corner reflectors. Because the phase centers of the reflectors

21
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vigure 12. Two reflectors separated by 6 meters: maxima and

minima locations.
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Figure 14. Frequency characteristics of a reflex
klystron (after Liao).
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are not precisely known, the estimated error for this measurement is + 10 cm.
The agreement is quite good, better than the estimated error, except for the
one meter separation case, where the power curve severely distorts the inter-
ference pattern.

TABLE 6. REFLECTOR SEPARATION DETERMINED FROM RADAR DATA

Measured Number of Frequency Calculated Percent
Separation Cycles Observed Change Separation Error

(MHz) (meters)
5.0 41/2 136 4.96 0.8%
4.0 31/2 132 3.98 0.5%
3.0 2112 125.5 2.99 0.3%
2.0 11I/2 110.5 2.04 2.0%
1.0 51 1.47 47.0_j

An explanation of the fine structure (small oscillations) in some of the
data, particularly Figures 5, 6, 7, 9, and 10, is required. The large (-30 ft
by 35 ft), flexible metal door of the High Bay was approximately 20 meters
behind the corner reflectors. The radar boresight was at an oblique angle to
the door, so that under normal conditions no energy was reflected from the
door back to the radar. However, when the door was buffeted by the wind,
bringing it more perpendicular to boresight, its effect could clearly be seen
in the radar signal. The period of the oscillations is consistent with the
distance between the door and target.

Two interference patterns were recorded for a target consisting of three
corner reflectors. A 50 am reflector was placed between the two initially
used. For the first pattern (Figure 15), the spacing was 4 meters between the
first and second and 2 meters between the second and third; for the second
pattern (Figure 16), the spacing was 3 meters and 2 meters. These patterns,
clearly more complex than those for two reflectors, are analyzed and compared
with simulated data in Section 6.

I

B. 140 GHz Radar Data

The measurements made with the 140 GHz radar were taken at the Road
Test Course Area, Redstone Arsenal, Alabama. The target range was about 480
meters, and two triangular trihedral corner reflectors of approximately 5,000
am and 6,000 sm were used. Only the extrema were measured on an oscilloscope
while manually changing the transmitted frequency. The frequency calibration
method is described elsewhere.1 9

The interference patterns for two different reflector separations are
shown in Figure 17 and Figure 18. Calculations of the radar range separation
of the corner reflectors using the radar data gave 1.61 meters and 2.85
meters; both values agree with the measued values within about 5%. Clearly,
the data suffer from nonlinearities in the receiver or transmitter. This
effect is further demonstrated in the response for a single corner reflector
(Figure 19), taken at a range of 400 meters. It is expected that such extreme
nonlinearities will make analysis of results for more than two reflectors
essentially impossible.

25
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Figure 16. Three reflectors separated ly 3m, 2m.
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Figure 19. Single corner reflector response.
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V. COMPUTER SIMULATION

A computer simulation was developed to compare theoretical versus
measured results. Figure 20 details the sequence of actions in the program
which develops the theoretical response of the square law detector as the
voltage of the source is swept. Since the frequency output of the source is
not linear with the applied slewing (reflector) voltage, the plots are ampli-
tude versus slewing voltage. Figure 21 provides the sequence of actions
resulting in the discrete Fourier transform (DFT) of the theoretical result.
The FFT algorithm used to compute the DFT has been modified to compute the DFT
on a computer (HP #9830) which does not have a COMPLEX statement. The modifi-
cation divides all operations and coefficients into real and imaginary parts.

The HP #9830 uses a type of BASIC (peculiar to HP machines). The actual
programs are shown in Appendices A and B. A simple way of Inputing the N
square law responses is to use the LINK command in the appropriate spot in the
square law detector response program (after statement number 620). This is
necessary for a small machine such as the HP #9830, since the programs are on
cassette tape and no statement equivalent to the FORTRAN CALL statement exists
in the HP BASIC language used. The program in Appendix C has the LINK com-
mand, directing the program to the FFT routine stored as program 2 on the
cassette tape. In order to use this feature, the number of frequency steps
must be a power of 2. The maximum number of steps allowed by the structuring
of the machine is 256.

VI. COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS I
For the case of two reflectors, Figures 22 through 29 show a comparison

of simulation (dashed curves) and experimental results (solid curves). The
simulation results shown include weighting by the power spectrum shown In
Figure 8 and the nonlinear frequency dependence on reflector voltage. The
frequency of modulation produced by the simulation is nearly identical to the
measured data. The relative amplitudes of the peaks in the experimental data
fall between the results obtained with the ideal (flat) power spectrum and
those obtaiined by weighting the simulation with the power spectrum of Figure
8.

Figure 30 demonstrates the effect of temperature on the output frequency
of the klystron oscillator. The specification sheet indicates that the Varian
VRB-2111A reflex klystron has a typical frequency/temperature coefficient of
-1.6 MHz/OC; all of the simulation results used this value. The effect of
this coefficient is to introduce a constant phase shift into the interference
patterns. This mechanism was used to adjust the phase of the simulated results
to agree with the experimental results, and the temperature correction factors
are shown in the figures.

The phase of the signal is really of no importance, since the desired
information Is the Fourier transform of the measured data. Other sources of
slow frequency instability, such as power supply voltages will contribute a
phase factor which may be considered to be constant for a given measurement.

The effect of the nonlinear frequency dependence is to cause a changing
periodicity in the interference patterns. Figure 13 shows that the slope
becomes steeper on the frequency versus voltage curve at the upper end,
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Figure 20. Square-law detector response algaritbu.
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Klystron Reflector Voltage Change

Figure 22 Simulation: two reflectors separated by 6 meters.
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Figure 23. Simulation: two reflectors separated by 5 meters.
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'Figure 74. Simulation: two reflectors separated by 4 meterb.
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Figure 25. Simulation: two reflectors separated by 3 meters.
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FIgvre 27. Simulation: two reflectors separated by 1 meter.
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Pigure 29. Simulation: three reflectors separated by 3m, 2m.
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resulting in a decrease in the period of the oscillation after the reflector
voltage change reaches 60 units. This effect has been accurately modeled in
the simulation by plotting the results as a function of reflector voltage
change, rather than as a function of frequency. Only when the frequency curve
is perfectly linear can the experimental data be considered to be an amplitude
versus frequency plot.

Figure 31 shows the output of the FFT for the data produced by the simu-
lation for a separation between reflectors of 6 meters. As noted in the
figure, the result is for a flat power spectrum and a perfectly linear sweep
of the source. Figures 32 and 33 show the results of the FFT of the data pro-
duced by the simulation for the other cases of interest. All of the plots are
normalized to the largest coefficient (dc term) of the FFT. Figures 34
through 36 display the same cases for a separation of 4 meters.

Figures 37 and 38 provide the results of FFT's of the simulated data for
the three reflector case without and with degradation. Figure 38 can then be
compared to Figure 39, which is an FFT of the experimental data obtained by
manually digitizing the data and calculating the spectrum. Figure 40 shows
the results for experimental data for separations of 3 meters, 2 meters. The
FIFT of the actual data displays a broader and, hence, flatter spectrum that
the FFT of the simulation result. The combined effect of the nonlinear power
curve and nonlinear frequency sweep is to spread the power over the range
domain. These effects combine to mask the expected range separation lines and
Introduce others which make the target appear more complicated.

VII. CONCLUSIONS AND RECOMMENDATIONS

For the data collected with two corner reflectors, there is excellent
agreement between the measured range separations and those calculated from the
radar results. There is, in general, good qualitative agreement between the
experimental Interference patterns and those obtained from theoretical com-
puter simulation for both two reflector and three reflector data.

Most of the temperature shifts required to adjust the phase of the inter-
ference pattern (or, equivalently, to adjust the frequency span end points)
are not unreasonable. The temperature in the High Bay during the experiment
was low (~10oC), while the surface body temperature of the klystron during
normal operation is probably higher than 50OC. In order to conserve tube
lifetime, the klystron was often turned off between measurements, occasionally
for long periods of time. Thus, large temperature variations were possible.

In addition, some phase change may be due to regulation or inadvertent
adjustment of the klystron beam (resonator) voltage. An increase in beam
voltage causes a decrease In frequency; a crude measurement indicated a sen-
sitivity on the order of -1 MHz/V.

Two factors contributed to the discrepancies between the theoretical and
experimental interference patterns with respect to amplitudes: (1) the inabi-
lity to adequately characterize the power curve (note: actually the power
curve used should have been the interference pattern obtained with only one
reflector, since receiver characteristics are also included); and (2) because
the antenna beamwidthe were so narrow, the unlikelihood that the corner
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reflectors were equally illuminated by the transmit antenna or equally sub-
tended by the receive antenna (especially for the measurements with three
reflectors). Discrepancies with respect to the positions of maxima and minima
along the "klystron reflector voltage change" axis result from the inability
to adequately obtain the klystron frequency dependence on reflector voltage;
spectrum analysis is required.

The agreement between the Fourier transform experimental and theoretical
data is less apparent, again, due to the problems cited above. Such agreement
is critical if the sensor is to be used to investigate complex targets. The
fine structure in the experimental data show up as spectral lines which indi-
cate wide range separations.

It is evident that the basic radar measurement, i.e., the interference
pattern, contains target information greatly modified by the dynamic sensor
characteristics. In order that the data are more representative of the target
than of the radar, the following radar attributes are deemed desirable:

1. The frequency of the source should be a linear function of the
control voltage, or the control voltage be such that the frequency sweep is
linear, and that a voltage proportional to frequency be provided.

2. The transmitted and received power curve should be flat over the fre-
quency diverse bandwidth, or it should be adequately characterized and
allowances made for it in signal processing; this requirement is increasingly
more critical for increasingly more complex targets.

3. The frequency diverse bandwidth should be as large as possible.

4. The transmitter and receiver should be temperature controlled, or
their temperature characteristics should be determined over the operating
ranges and compensated for. .,ote that a phase change in the interference pat-
tern does not affect the Fourier transformed data, provided that the bandwidth
is sufficiently large.

5. A pulsed system is preferable to a continuous wave system, in order
to limit the effects of clutter (such ag occurred, as a result of the High Bay
door). Pulse width can be adjusted to maximize target response while mini-
mizing clutter contamination. Pulse-to-pulse coherence is not required.

In terms of bandwidth, temperature effects, power curve and frequency
nonlinearities, and continuous wave operation, the 94 GHz reflex klystron is
clearly not an adequate source for application to complex targets. The radar
at 140 GHz had a reasonable bandwidth, but also had severely nonlinear power
characteristics. It is recommended, therefore, that further research be per-
formed in an effort to find suitable millimeter wave sources and to build and
test experimental systems achieving the desirable characteristics delineated.

Three millimeter wave (near 3mm) sources are currently available which
have large electronically tuned frequency diverse bandwidths. The first, a 94
GHz solid state source employing a varactor controlled gunn diode oscillator,
has a bandwidth of 600 MHz with a continuous wave power output of 30mW.
Although this power level is probably too low for tactical systems, the device
is coherent, and pulse compression may be employed. The cost is about $16 k.
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The second source is a 80 GHz rising sun magnetron tube having a 3-4
kilowatt peak power output and a I GHz agile bandwidth. Rapid tuning is
achieved by movement of a small conducting ring at one end of a rising sun
resonant cavity. The tuning ring is supported and moved by a piezoelectric
transducer. The magnetron pulse duration is typically 50 ns with a duty cycle
of 0.0002. A high voltage power supply (100kW) is required. The cost of the
tube is only about $20 k.

The third off-the-shelf source is an 0-type backward-wave oscillator
(carcinotron), electronically tunable from 88 GHz to 92 GHz. Continuous wave
power over this bandwidth is 0.3 to 4 watts, although higher power can be
achieved with narrower bandwidths. Tube cost is $20-25 k. Kilovolt power
supplies are required.

In addition, there is in developement a 94 GHz coupled cavity traveling
wave tube (TWT) with a 2 GHz bandwidth. Power output is 1OOW with a 0.50
duty cycle.

I
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